设为首页
收藏本站
开启辅助访问
切换到窄版
登录
立即注册
首页
Portal
行业资讯
人才培育
求职招聘
智慧教育
人才之家
BBS
淘帖
Collection
分享
Share
搜索
搜索
行业资讯
集成电路
化合物IC
AI芯片
分立器件
新IC材料
行业政策
人才培育
政策法规
高等教育
职业教育
行业观察
行业指导
人才政策
热门领域
物联网IOT
人工智能
AI芯片
汽车电子
可穿戴电子
区块链
芯片制造
芯片杂谈
前端设计
MEMS
封装测试
版图设计
IC新材料
本版
文章
帖子
用户
芯片人才网
»
人才之家
›
热门领域
›
人工智能AI/深度学习
›
或许人工智能远没有你想象的聪明
返回列表
发新帖
或许人工智能远没有你想象的聪明
[复制链接]
566
|
0
|
2020-11-29 21:02:19
|
显示全部楼层
|
阅读模式
27日,世界5g大会举行未来信息通信技术及国际战略研讨会,是一场大牛们的“华山论剑”。因为都是业界泰斗,嘉宾们难得共聚,台下频频交流,“咬耳朵”,话题专业之余不乏轻松。
而在这个重量级论坛上,能让所有嘉宾竞相拿出手机拍照的人,沈向洋是为数不多的一个。
他是硅谷科技圈最有分量、美国科技公司职位最高的中国人。今年新冠肺炎疫情期间效力回国,消息轰动中美科技界。
作为领军全球人工智能的专家,沈向洋提出,人工智能虽然已经获得了巨大的发展,但仍需要从深度学习过渡到深度理解,他为大家公布了最新研究进展,勾画了一个能够达到深度理解的人工智能框架系统。
他举例说明,哈士奇,是狗还是狼?这个对人脑不算事的判断,却可以困惑人工智能很久!
据悉,目前人工智能的发展,深度神经网起到非常重要的作用。这是美国十年前的研究成果,由沈向洋和同事在微软研究院做出。
他指出,十年以来,人工智能在大数据,运算,和延时处理三方面取得了重大的进展。但是对于真正的理解,人工智能实际上十年来没有特别重大的突破。
在算力方面,英伟达过去超过英特尔引领潮流,相信未来会继续奋勇向前。包括亚马逊、谷歌等企业的自主研发,已经把云端算力做得非常强大,这方面,来自深圳鹏城实验室的鹏城云脑,同样是非常典型的成功案例。
接下来,他话锋一转,开始“泼冷水”,指出即使是这样了不起的算力,真正应对智能时,得到的结果让人啼笑皆非。哪怕是全球最大的图像识别数据库ImageNet,仍然还差10的五次方的量级才能真正达到人的理解能力。所以就不难理解,整个领域还在拼命增加算力,这方面还远没有到天花板。这是科研的一条道路。
他提出,或许还存在另一条,更加巧妙的前进路线。
他给大家用计算机视觉和自然语言处理方面讲了两个例子,来解释为什么今天有这么强大的算力,有这么多大数据以后,智能还不尽如人意。
他在微软的朋友在华盛顿大学用深度神经网训练了一个模型,让人工智能分辨哈士奇是狼还是狗。这对于人脑来分辨,再简单不过。但人工智能的判断,6个结果里最多只有5个正确。用模型寻找错误的原因显得非常艰难。最后研究发现,神经网络对于哈士奇是狗还是狼,判断竟来自于旁边的背景。背景是雪地,它判断为狼,背景为草地,它判断为狗。跟狗和狼面部等大量的数据特征分析一点关系都没有。这让人工智能显得非常有趣,也非常危险。
此外,运用大数据,大训练模型出来的人工智能结果,在按照设定程序来运行,表现非常了不起,而如果遭受攻击,得出的结果可能大相径庭。
沈向洋指出,以上都值得反思,深度学习做到现在是不是离智能更近了?
为此他曾经和比尔盖茨以及纽约大学教授GaryMarcus讨论,得出的结论是,预训练的模型、深度学习的东西,到现在为止只是获取知识,而不是理解知识。所以必须要清醒的知道,正在做非常了不起事情的人工智能,并不是最棒的模型。
他认为,很有必要回归初心,回过头去认真思考机器学习的目的到底是什么。
其次,人工智能今天惊人的成就,做仿真器是最大的代表作。接下来最激动人心的事情,可能应该是写更大的仿真器,去仿真真正的物理世界。
最后,接下来最重要的事情,是让人工智能从深度学习过渡到深度理解。他正在尝试的解决之道,是建立一个开放域的对话模型,建立神经会话模型,能够做到深度理解的框架。
回复
使用道具
举报
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
likaichuang1
371
主题
372
帖子
1355
积分
金牌会员
金牌会员, 积分 1355, 距离下一级还需 1645 积分
金牌会员, 积分 1355, 距离下一级还需 1645 积分
积分
1355
加好友
发消息
回复楼主
返回列表
智能家居及物联网
人工智能AI/深度学习
汽车电子
天线|RF射频|微波|雷达技术
可穿戴电子
区块链