设为首页
收藏本站
开启辅助访问
切换到窄版
登录
立即注册
首页
Portal
行业资讯
人才培育
求职招聘
智慧教育
人才之家
BBS
淘帖
Collection
分享
Share
搜索
搜索
行业资讯
集成电路
化合物IC
AI芯片
分立器件
新IC材料
行业政策
人才培育
政策法规
高等教育
职业教育
行业观察
行业指导
人才政策
热门领域
物联网IOT
人工智能
AI芯片
汽车电子
可穿戴电子
区块链
芯片制造
芯片杂谈
前端设计
MEMS
封装测试
版图设计
IC新材料
本版
文章
帖子
用户
芯片人才网
»
人才之家
›
芯片设计与制造
›
FPGA|ASIC|IC前端设计论坛
›
ASIC芯片除了用来挖矿,还能用来做什么? ...
返回列表
发新帖
ASIC芯片除了用来挖矿,还能用来做什么?
[复制链接]
1293
|
0
|
2021-3-23 08:47:34
|
显示全部楼层
|
阅读模式
ASIC (Application Specific Integrated Circuit )芯片是专用集成电路,是针对用户对特定电子系统的需求,从根级设计、制造的专有应用程序芯片,其计算能力和计算效率可根据算法需要进行定制,是固定算法最优化设计的产物。ASIC 芯片模块可广泛应用于人工智能设备、虚拟货币挖矿设备、耗材打印设备、军事国防设备等智慧终端。
在硬件层面,ASIC 芯片由基本硅材料、磷化镓、砷化镓、氮化镓等材料构成。在物理结构层面,ASIC 芯片模块由外挂存储单元、电源管理器、音频画面处理器、网络电路等IP核拼凑而成。同一芯片模组可搭载一个或几个功能相同或不同的ASIC 芯片,以满足一种或多种特定需求。
ASIC 芯片分类
(1) 根据定制程度不同,ASIC 芯片可被分为全定制ASIC 芯片、半定制ASIC 芯片及可编程ASIC芯片。
① 全定制ASIC 芯片
全定制ASIC 芯片是定制程度最高的芯片之一,研发人员基于不同电路结构设计针对不同功能的逻辑单元,于芯片板搭建模拟电路、存储单元、机械结构。逻辑单元之间由掩模版连接,ASIC 芯片掩模版也具备高度定制化特点。
全定制化ASIC 芯片设计成本较高,平均每单位芯片模块设计时间超过9 周。该类芯片通常用于高级应用程序。
相对半定制化ASIC 芯片,全定制化ASIC 芯片在性能、功耗等方面表现优秀。如应对相同功能,在同种工艺前提下,全定制化ASIC 芯片平均算力输出约为半定制化ASIC 芯片平均算力输出的8 倍,采用24 纳米制程的全定制化ASIC 芯片在性能上优于采用5 纳米制程的半定制化ASIC 芯片。
② 半定制ASIC 芯片
构成半定制ASIC 芯片的逻辑单元大部分取自标准逻辑单元库,部分根据特定需求做自定义设计。相对全定制ASIC 芯片设计成本较低,灵活度较高。
根据标准逻辑单元和自定义逻辑单元数量搭配模式不同,半定制ASIC 芯片可细分为门阵列芯片和标准单元芯片。
a、 门阵列芯片
门阵列ASIC 芯片包括有信道门阵列、无信道门阵列和结构化门阵列。门阵列ASIC 芯片结构中硅晶片上预定晶体管位置不可改变,设计人员多通过改变芯片底端金属层等方式调整逻辑单元互连结构。
有信道门阵列ASIC 芯片:该类芯片晶体管位置高度固定,设计人员可在晶体管行之间预定义的空白空间进行电路布局;
无信道门阵列ASIC 芯片:无信道结构下,晶体管行之间不存在电路布局空间,设计人员通常于门阵列单元上方进行布线;
结构化门阵列ASIC 芯片:该结构包括基本门阵列行及嵌入块。嵌入块可提高线路布局灵活度,但对芯片体积构成限制。该结构下,线路布局面积使用效率较高,设计成本较低,周转时间较短。
b、 标准单元
该类ASIC 芯片由选自标准单元库的逻辑单元构成。设计人员可按算法需求自行布置标准单元。除标准单元外,微控制器、微处理器等固定块也可用于标准单元ASIC 芯片架构。
③ 可编程ASIC 芯片
广义而言,可编程ASIC 芯片可分为FPGA 芯片和PLD 芯片。在实际生产过程中,将FPGA 芯片列为不同于ASIC 芯片的研究机构和企业数量不断增加,故本报告仅将PLD(Programmable Logic Device)视为可编程ASIC 芯片子类别。
PLD 亦称可编程逻辑器件,在结构上包括基础逻辑单元矩阵、触发器、锁存器等,其互连部分作为单个模块存在。设计人员通过对PLD 进行编程以满足部分定制应用程序需求。
(2) ASIC 芯片可根据终端功能不同分类为TPU 芯片、BPU 芯片和NPU 芯片。
① TPU 为张量处理器,专用于机器学习。如Google 于2016 年5 月研发针对
Tensorflow 平台的可编程AI 加速器,其内部指令集在Tensorflow 程序变化或更新算法时可运行。
② BPU 是大脑处理器,是由地平线科技提出的嵌入式人工智能处理器架构。
③ NPU 是神经网络处理器,在电路层模拟人类神经元和突触,并用深度学习指令集直接处理大规模电子神经元和突触数据。
ASIC芯片特点
CPU 等传统芯片通过读取、执行外部程序代码指令而生成结果,相对而言,ASIC 芯片读取原始输入数据信号,并经内部逻辑电路运算后直接生成输出信号。
(1) 优点:
相对CPU、GPU、FPGA 等类型芯片,ASIC 芯片在专用系统应用方面具备多元优势,具体表现在如下几方面。
① 面积优势:ASIC 芯片在设计时避免冗余逻辑单元、处理单元、寄存器、存储单元等架构,以纯粹数字逻辑电路形式构建,有利于缩小芯片面积。应对小面积芯片,同等规格晶圆可被切割出更多数量芯片,有助于企业降低晶圆成本。
② 能耗优势:ASIC 芯片单位算力能耗相对CPU、GPU、FPGA 较低,如GPU 每算力平均约消耗0.4 瓦电力,ASIC 单位算力平均消耗约0.2 瓦电力,更能满足新型智能家电对能耗的限制。
③ 集成优势:因采用定制化设计,ASIC 芯片系统、电路、工艺高度一体化,有助于客户获得高性能集成电路。
④ 价格优势:受到体积小、运行速度高、功耗低等特点影响,ASIC 芯片价格远低于CPU、GPU、FPGA 芯片。当前全球市场ASIC 芯片平均价格约为3 美元,远期若达到量产规模,ASIC 芯片价格有望保持持续下降态势。
(2) 缺点:
① ASIC 芯片定制化程度较高,设计开发周期长,成品需要做物理设计和可靠性验证,面市时间较慢。
② ASIC 芯片对算法依赖性较高。人工智能算法高速更新迭代,导致ASIC 芯片更新频率较高。
③ 因ASIC 芯片定制化程度较高,研发周期相对漫长,扩大了ASIC 成品被市场淘汰的风险。
ASIC 芯片产品介绍
① 谷歌于2016 年推出TPU,谷歌旗下2017 版AlphaGo 物理处理器中镶嵌4 个TPU,可支持谷歌云TPU 平台和机器学习超级计算机。
② IBM 通过模拟大脑结构于2014 年8 月推出制程为28 纳米的第二代TrueNorth芯片,可应用于实时视频处理。
③ 英特尔于2017 年推出Xeon 系列ASIC 芯片。该系列芯片可独立充当处理器,无需附加主机处理器和辅助处理器,可应用于机器深度学习。
④ 斯坦福大学推出基于新神经形态计算架构的ASIC 芯片运算速度为普通电脑9,000倍,可模拟约100 万个大脑神经元、几十亿个突触连接。
⑤ 新兴科创企业将ASIC 芯片应用拓展至安防、辅助驾驶、传统家电、智慧医疗等领域。
参考来源:中国ASIC芯片行业精品报告
本文来源:智能计算芯世界
本帖子中包含更多资源
您需要
登录
才可以下载或查看,没有帐号?
立即注册
x
回复
使用道具
举报
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
Gaohanqing
356
主题
356
帖子
1318
积分
超级版主
积分
1318
加好友
发消息
回复楼主
返回列表
芯片杂谈
FPGA|ASIC|IC前端设计论坛
集成电路生产/封装/工艺
MEMS(微机电系统)
封装设计
半导体新材料
EDA设计
版图设计
其他